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Abstract

Chironomid remains from a mid-elevation lake in the Sierra Nevada, California, were used to estimate quantitative summer surface water
temperatures during the past ∼15,000 yr. Reconstructed temperatures increased by ∼3°C between lake initiation and the onset of the Holocene at
∼10,600 cal yr BP (calibrated years before present). Temperatures peaked at 6500 cal yr BP, displayed high variability from 6500 to 3500 cal yr
BP, and stabilized after 3500 cal yr BP. This record generally tracks reconstructed Santa Barbara Basin sea surface temperatures (SSTs) through
much of the Holocene, highlighting the correspondence between SST variability and California land temperatures during this interval.
© 2006 University of Washington. All rights reserved.
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Introduction

Variations in northeast Pacific Ocean sea surface tempera-
tures (SSTs) affect California climate by influencing the
location of atmospheric pressure cells, jet-stream flow, and
storm intensity (Raphael and Cheung, 1998). The conditions
exhibited during the positive phases of the El Niño–Southern
Oscillation (ENSO) and Pacific Decadal Oscillation (PDO),
when a weakened California current and decreased coastal
upwelling result in warmer SSTs along the California coast,
generally result in a warmer and wetter California by adding
energy and moisture to the climate system (Cayan et al., 1998).
It has been shown that northeast Pacific SSTs influence summer
temperatures in California at an annual time scale (Alfaro et al.,
2005), and that 20th century SST variations relating to the PDO
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directly affect Sierra Nevada ecosystems by modifying varia-
tions in terrestrial summer temperatures (Millar et al., 2004).

The northeast Pacific Ocean has exhibited a 1.3°C increase in
SSTs during the second half of the 20th century (Di Lorenzo et al.,
2005), whereas California has experienced a 1–2°C increase in air
temperature during this time (Cayan et al., 2001). It is important to
ascertain the long-term relationship between northeast Pacific
Ocean SSTs and California temperatures to determine how this
temperature shift might affect California climate through time.
Previous late Pleistocene and Holocene climate reconstructions
have related Pacific Ocean SSTs to California climate, but these
studies focused on reconstructing water mass balance (Benson
et al., 2003; Yuan et al., 2004) or effective moisture conditions
(Heusser, 1998), which tend to obscure the effects of temperature
and precipitation on paleoclimatic conditions. Moreover, while
there have been a number of late Quaternary vegetation and climate
reconstructions in the Sierra Nevada, much of the past work has
focused on pollen or charcoal records (Anderson, 1990; Anderson
and Smith, 1994; Brunelle and Anderson, 2003; Mensing et al.,
2004), hydrologic balance of large Great Basin lakes (Stine, 1990;
Davis, 1999; Benson et al., 2002a), and late Pleistocene and
ed.

mailto:potito.1@osu.edu
mailto:aaron.potito@nuigalway.ie
http://dx.doi.org/10.1016/j.yqres.2006.05.005


357A.P. Potito et al. / Quaternary Research 66 (2006) 356–363
Holocene glacial fluctuations (Clark and Gillespie, 1997; Konrad
and Clark, 1998). Although these studies are valuable, the methods
used do not provide an independent assessment of paleotempera-
ture. Utilizing chironomid (Insecta: Diptera) remains and a chi-
ronomid-based surface water–temperature inference model
(Porinchu et al., 2002), this study provides the first independent
quantitative temperature reconstruction in the Sierra Nevada span-
ning the entire post-glacial interval, although an earlier publication
did provide a chironomid-based temperature record for the
Pleistocene–Holocene transition in the region (Porinchu et al.,
2003).

Chironomids are highly diverse, have relatively short life cycles,
are widely distributed and are abundant in freshwater ecosystems,
and the adults are mobile. Chironomids spend the majority of their
life cycle under water as larvae and are very sensitive to changing
limnological conditions, and as a result they are likely to have
distributions in equilibriumwith their environment (Walker, 2001).
There are a number of recent studies that have utilized chironomid
assemblages to resolve late Pleistocene and Holocene temperature
fluctuations (Levesque et al., 1996; Bigler et al., 2002; Sëppa et al.,
2002; Heiri andMillet, 2005). The random sample-specific error in
chironomid temperature models can be 1–2°C, which is often
comparable to the magnitude of the Holocene temperature
fluctuations under study (Velle et al., 2005). This uncertainty can
be overcome by comparing trends in chironomid assemblage
variations to other factors such as lake hydrology, and by including
other paleolimnological evidence in the analysis and interpretation
(Bigler et al., 2002; Sëppa et al., 2002; Rosen et al., 2003; Rosen-
berg et al., 2004).

Study site

Hidden Lake is a small (2.0 ha), mid-elevation (2379 m above
sea level) lake along the eastern slope of the Sierra Nevada,
Figure 1. Map of study site along with locations of other regional records. (A) Locat
record from Owens Lake (Benson et al., 1997), and Hidden Lake. (B) Hidden Lake
California (Fig. 1). It is 9.7 m deep. The lake overlies Cretac-
eous granodiorite (Giusso, 1981), has no inflow channel and
has only seasonal outflow. At present, the lake is slightly al-
kaline (pH = 7.8), freshwater (salinity = 9.81 mg/L), and
eutrophic (total P = 6 μg/L) (lake chemistry measurements
were taken July 2001). The lake has two small islands in its
southeast portion and a large shallow-water shelf along the
southern shore extending to the northern edge of the islands
(Fig. 1). The remainder of the lake forms a stratified basin, con-
firmed through multi-year monitoring of summer lake water
temperatures using a thermistor chain. The vegetation in the
modern lake catchment is a coniferous forest-woodland dominated
by Pinus contorta, Pinus jeffreyi, and Juniperus occidentalis.

Methods

A 613-cm core (496 cm organic sediment) was recovered in
February 2002 in 9.4 m of water using a modified Livingston
piston corer (Wright, 1991). Lithology was stratigraphically
described, and the core was sectioned at 0.5-cm intervals. Loss-
on-ignition (LOI) analysis (Heiri et al., 2001) was conducted at
0.5- to 1-cm intervals.

AMS radiocarbon and tephrochronological ageswere obtained
along the sediment core to provide the basis for age–depth
modeling (Table 1). CALIB version 5.0 and the atmospheric
decadal dataset were used to convert radiocarbon dates (14C yr
BP) to their calibrated ages (cal yr BP; Stuiver et al., 1998). The
midpoint of the 2-sigma range with the highest probability of
occurrence was used to represent the cal yr BP (calibrated years
before present) ages employed in the age–depth model (Fig. 2).
The age–depth model is split into two separate curves: one based
on four terrestrialmacrofossils and an identified tephra layer in the
uppermost portion of the core, and one based on three bulk
sediment dates from the basal portion of the core. Bulk sediments
ions of a SST record from the Santa Barbara Basin (Friddell et al., 2003a), δ18O
study site (X = coring sites).



Table 1
Age control data

Depth (cm) Material Lab codea 14C yr BP ±1σ 2σ age range (cal yr BP) Relative area under distribution Calibrated age (cal yr BP)

143–144 Twig Beta-179731 2540 ± 40 2487–2750 0.989 2619
247–247.5 Pine needle Beta-179732 4460 ± 40 4964–5291 0.963 5128
310–310.5 Pine needle Beta-179733 5880 ± 40 6621–6760 0.896 6691
347.5–351 Tsoyawata tephrab – 7015 ± 45 7728–7881 0.742 7805
407–407.5 Twig Beta-179734 8660 ± 40 9535–9741 0.998 9638
461–462 Bulk sediment Beta-167869 9460 ± 60 10,549–10,812 0.702 10,681
473–474 Bulk sediment Beta-168954 11,170 ± 40 12,997–13,412 0.948 13,195
493–494 Bulk sediment Beta-167277 12,700 ± 40 14,344–15,660 1.000 15,002
a All AMS radiocarbon dating was conducted by Beta Analytic, Miami, Florida.
b Tephra identification and subsequent dating was conducted at the Microbeam Facility, GeoAnalytica Laboratory, Department of Geology, Washington State

University.
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represent a mix of lake and terrestrial organics, and bulk sediment
dates are treated as maximum estimates of depositional age due to
potential reservoir effects. Therefore, these dates are treated sepa-
rately from the well-constrained portion of the chronology.

Chironomid analysis followed standard procedures outlined
in Walker (2001). A minimum of 40 head capsules (average of
63 per sample) were hand picked with the aid of a Wild® 5 ×
dissection scope at 50 × (the sample at 487–487.5 cm contained
33 head capsules). The chironomid specimens were perma-
nently mounted on slides and identified at 100–400 ×. Identi-
fications were based onWiederholm (1983), Oliver and Roussel
(1983), Heiri et al. (2004), and a reference collection at UCLA.
The chironomid percentage diagram was constructed using C2
version 1.4 (Juggins, 2002). Zonation of the chronology was
performed on chironomid percentage abundances using ZONE
version 1.2 and is based on optimal sum-of-squares partitioning
(Juggins, 1991). In order to divide the chronology into statisti-
cally significant zones, the broken-stick model (Bennett, 1996)
was applied to the resulting zonations using BSTICK.

The quantitative temperature reconstruction presented in this
paper relied on the chironomid-based inference model of
Porinchu et al. (2002) for surface water temperature developed
from a 44-lake training set in the eastern Sierra Nevada.
Chironomid assemblages were shown to be an excellent predictor
Figure 2. Age-depth model for Hidden Lake. The model uses two separate curves:
a second-order polynomial spanning the first five dates and linear regression for the
bulk sediment dates. Error bars are 2σ cal yr BP age range.
of summer surface water temperature in the Sierra Nevada, and a
robust one-component weighted-average partial least squares
(WA-PLS) inference model for surface water temperature was
developed (r2 = 0.72, root mean squared error = 1.1°C and a
maximum bias of 1.24°C). This model was applied to the Hidden
Lake chironomid stratigraphy using WA-PLS version 1.1
(Juggins and ter Braak, 1996).

Results and interpretation

There were 43 distinct taxa found in the 57 samples analyzed
from the Hidden Lake core. The chronology was divided into five
statistically significant zones (Fig. 3). The initial post-glacial
chironomid community shows a high abundance of Corynocera
oliveri type. In the Sierra Nevada training set, Corynocera oliveri
type is the taxon with the coldest surface water temperature
optimum (Porinchu et al., 2002), indicating the occurrence of cold
surface water conditions in Hidden Lake during this interval.
Zones 2 and 3 showed variable abundances of thermophilous
littoral taxa, includingDicrotendipes, signifying fluctuating water
levels and the sporadic influence of a shallow-water shelf on the
composition of midge fauna during times of increased lake depth.

Zone 4was characterized by black gyttja interbedded by distinct
laminations, sediment characteristics that are likely the result of
deeper water conditions with insufficient benthic oxygen to support
bioturbating organisms (Renberg and Segerström, 1981; Larsen
and MacDonald, 1993). The increased abundance of Chironomus
in this zone supports the presence of anoxic conditions in the deeper
lake basin (Porinchu and MacDonald, 2003). Warm-water littoral
species fossils, includingMicrotendipes,Polypedilum,Parakieffer-
iella sp. B, and Pagastiella, became more abundant during this
time. Chaoborus spp. (phantom midge), an indicator of warm-
water conditions (Rosenberg et al., 2004), also became more abun-
dant in this zone.

Toward the end of Zone 4, there was a transition in the lake
record. Sediments became lighter, laminations became lessmarked,
andChironomus decreased, implying the end of deep-water anoxic
conditions. In addition, new warm-water littoral species, such as
Glyptotendipes, Pagastiella, and Tribelos, began to emerge while
Microtendipes increased substantially (Wiederholm, 1983; Olander
et al., 1999). The increased relative abundance of Chaoborus is
further evidence of lake warming toward the end of Zone 4. It is
important to note the appearance ofLimnophyes/Paralimnophyes, a



Figure 3. Chironomid stratigraphy and lithology for Hidden Lake. Taxa are grouped as ‘cool-water taxa’ and ‘temperate taxa’ according to their surface water temperature optima. Water temperature optima values are in
parentheses for species that were present in N20% of lakes in the calibration set and determined in Porinchu et al. (2002). Other warm-water taxa were grouped based on their surface water temperature optima as defined
in the literature and include Cladotanytarsus mancus type, Cladopelma,Glyptotendipes, Pagastiella, and Tribelos (see Discussion for specific citations on each taxon). Head-capsule concentration and the Chaoborus-to-
chironomid ratio are also presented in the stratigraphy.
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Figure 4. Chironomid-based summer surface water temperature reconstruction for Hidden Lake with a LOWESS smoother (span = 0.10). The Hidden Lake
temperature curve is accompanied by a LOWESS-smoothed (span = 0.05) Globigerina bulloides-based δ18O reconstruction from the Santa Barbara Basin (Friddell
et al., 2003b), a LOWESS-smoothed (span = 0.10) Owens Lake δ18O curve (Benson et al., 2002b), a LOWESS-smoothed (span = 0.10) Hidden Lake LOI curve, and
Hidden Lake lithology. The Owens Lake dating model has been slightly modified by the study's authors since first publication.
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semi-terrestrial chironomid taxon indicative of the emergence of a
lakesidemarsh that likely developed along the lake's edges aswater
levels receded (Wiederholm, 1983).

The inferred drop in lake level and warmer water conditions
lasted from ∼7200 to ∼4500 cal yr BP. After ∼4500 cal yr BP,
Chironomus abundance increased as anoxic conditions returned
to the lake. The increase in Cladotanytarsus mancus type also
supports the influence of deeper lake conditions during this time
(Wiederholm, 1983). The sustained presence of cool-water taxa
through Zone 5 is evidence of the existence of cool deep water,
likely resulting from strong stratification within the lake system.

Temperature reconstruction

Reconstructed summer surface water temperatures at Hidden
Lake range from 14.3 ± 1.2°C at lake initiation to 19.4 ± 1.5°C
at∼6500 cal yr BP (Fig. 4). Specific errors range from ± 1.2°C at
∼12,400 cal yr BP to ± 1.6°C at ∼1420 cal yr BP. There was a
general trend of increasing temperatures (∼3°C) from lake
initiation until ∼10,600 cal yr BP. Temperatures reached a
plateau of 16.8–17.4°C by ∼10,600 cal yr BP, and remained
relatively steady until just before 8000 cal yr BP. At∼8000 cal yr
BP, chironomid-inferred summer surface water temperatures at
Hidden Lake experienced a 1.3°C drop, then sharply rose 3.4°C
to their Holocene maximum of 19.4°C at∼6500 cal yr BP, 2.3°C
greater than chironomid-inferred modern surface water temper-
ature. From 6500 to 3500 cal yr BP, the temperature record
exhibited high-amplitude peaks (centered at∼6500,∼4500, and
∼3500 cal yr BP) and troughs (centered at∼5500 and∼3800 cal
yr BP) in temperature. The range of chironomid-inferred
temperatures for the mid-Holocene peaks was 19.1–19.4°C,
and the temperature of the mid-Holocene troughs was 17.1°C.
The remainder of the chronology is relatively stable, with
slightly cooler summer surface water temperatures that gradu-
ally decrease until the present. Chironomid-inferred surface
water temperatures were only 0.2°C lower than mean measured
summer surface water temperatures for the summer of 2002
(hourly temperatures logged through the summer), indicating
that temperature estimates accurately predict modern measured
Hidden Lake temperatures. Error estimates are often larger than
temperature changes during the mid- and late Holocene, a
common characteristic of chironomid-based Holocene temper-
ature reconstructions (Velle et al., 2005). However, contiguous
samples exhibit consistent temperature trends that do not follow
shifts in LOI or sediment lithology through this interval (Fig. 4),
suggesting that peaks and troughs are robust estimations of
relative temperature changes.

Discussion

Comparison to other regional records

TheHidden Lake reconstructionwas compared to other region-
al records to assess if the observed trends were catchment-specific.
Pollen evidence suggests that the late Pleistocene and early
Holocene in the Sierra Nevada were cooler and drier than present
(Davis et al., 1985; Anderson, 1990), and the Hidden Lake record
supports these inferences indicating low temperatures and
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generally lower, though fluctuating, lake levels during this time.
Furthermore, late Pleistocene warming accounted for the bulk of
the temperature increase during the Pleistocene–Holocene
transition in Hidden Lake (∼3.0°C). This compares favorably
with a chironomid-based temperature reconstruction from a high-
elevation lake in the Sierra Nevada, where the bulk of warming
during this transition also occurred before 10,600 cal yr BP, and
was of a similar magnitude during this time interval (∼3.3°C)
(Porinchu et al., 2003). Following the Pleistocene–Holocene
transition, relatively cool and wet conditions prevailed at Hidden
Lake from∼10,600 to∼7500 cal yr BP. This is supported by TIC
(total inorganic carbon) and δ18O evidence from Owens Lake,
California, which suggest regionally wet conditions from 10,000
to 8000 cal yr BP (Benson et al., 1997; Fig. 4).

The warm and dry mid-Holocene conditions in Hidden Lake
culminated with a Holocene thermal maximum at ∼6500 cal yr
BP. This coincided with the warmest climatic conditions within
the Santa Barbara Basin from ∼7800 to 5400 cal yr BP (Pisias,
1978). Hot and dry conditions were also indicated by the dis-
appearance ofGreat Basin pikas, which cannot survive high desert
heat, by ∼7850 cal yr BP (Grayson, 1993) and by submerged
stumps in Lake Tahoe (indicating lowerwater levels) from6300 to
4850 cal yr BP (Lindstrom, 1990). Drought conditions prevailed
at Pyramid Lake in western Nevada from ∼7600 to ∼3500 cal yr
BP, with the lowest lake levels occurring between ∼7600 and
∼6300 cal yr BP (Benson et al., 2002a; Mensing et al., 2004).
Owens Lake displayed a hiatus in sediment deposition between
∼6500 and ∼4000 cal yr BP, indicating that water levels were
below coring elevation (Benson et al., 1997; Fig. 4). Finally, using
a regional climate model, Diffenbaugh and Sloan (2004)
demonstrated that at ∼6000 cal yr BP summers in the western
United States were 1 to 2.5°C warmer than today due to increased
amplitude of seasonal insolation.

Temperature estimates in the Hidden Lake reconstruction show
a Holocene summer thermal maximum that was likely 2.3°C
higher than modern temperatures, comparing well with climate-
model estimates for 6000 cal yr BP. In addition to inferring higher
mid-Holocene summer temperatures, fluctuations in the Hidden
Lake record suggest a more variable climate from 6500 to 3500 cal
yr BP. This is supported by a SST record from the Santa Barbara
Basin (SBB) that indicates a warmer but more variable mid-
Holocene (∼7000–3500 cal yr BP), likely due to a persistent PDO
warm phase and increased intensity of ENSO events (Friddell et
al., 2003a), as well as other records (see below).

Hidden Lake water levels increased by ∼4500 cal yr BP, and
temperatures stabilized at slightly lower levels by∼3500 cal yr BP.
These relatively cooler and moister conditions are supported by a
general transition of meadows to peats in the southern Sierra
Nevada at ∼4500 cal yr BP (Anderson and Smith, 1994), and
increased lake levels at Pyramid Lake after ∼3500 cal yr BP
(Benson et al., 2002a).

Connection with northeast Pacific Ocean SSTs

Since northeast Pacific Ocean SSTs have been shown to
affect terrestrial temperatures at annual to multi-decadal time
scales (Millar et al., 2004; Alfaro et al., 2005), it can be ex-
pected that the general temperature trends should correspond at
the centennial to millennial time scales. In order to test this
long-term connection, the Hidden Lake temperature record was
compared to a Holocene Globigerina bulloides-based δ18O
record from the SBB, where lower δ18O values imply higher
SSTs (Friddell et al., 2003b; Fig. 4). The general trends in both
curves correspond well. Both curves show generally lower
temperatures in the early Holocene. The curves then dip in
temperature at∼8000 cal yr BP and show similar slope in rising
to their respective Holocene thermal maxima. Both curves also
exhibit a more variable mid-Holocene. The late Holocene be-
comes more stable, with generally lower and slightly decreasing
temperatures after ∼3500 cal yr BP. The reconstructions are
slightly offset, with SSTs leading Hidden Lake temperatures by
∼500 yr. This could be due to differences within the chro-
nologies. For example, the SBB record uses a surface reservoir
age of 710 yr (Friddell et al., 2003a).

The high-amplitude mid-Holocene climate variability that is
exhibited in both the SBB SST record and the Hidden Lake
chironomid sequence can be seen in other terrestrial records in the
Sierra Nevada. A δ18O record from Pyramid Lake exhibits
extreme fluctuations from ∼7600 to 6500 cal yr BP and further
fluctuations from6500 to 3900 cal yr BP of highermagnitude than
fluctuations in the late Holocene (Benson et al., 2002a). A δ18O
record from Owens Lake displays high-amplitude oscillations
from 7700 to 6500 cal yr BP, but the record is interrupted by a
sediment hiatus due to lowwater levels from∼6500 to 3500 cal yr
BP (Benson et al., 1997; Fig. 4). Finally, there is ample
anthropological evidence of increased climate variability in the
entire Pacific basin from ∼8000 to 3000 cal yr BP, based on
human settlement patterns inNorth and SouthAmerica, East Asia,
Australia, and other geographic regions (Sandweiss et al., 1999).

Conclusions

This study provides the first independent quantitative tem-
perature reconstruction in the Sierra Nevada using the paleolim-
nological approach to span the late Pleistocene and Holocene.
Climate inferences from the Hidden Lake reconstruction follow
broad trends in other terrestrial records from the region, although
the mid-Holocene appears more variable in the Hidden Lake
chironomid-inferred temperature record than in other terrestrial
records. This may reflect the strength of subfossil chironomids in
resolving variations in surface water temperature through time.
The record suggests that Sierra Nevada Holocene temperatures
are directly influenced by northeast Pacific Ocean SSTs at cen-
tennial to millennial time scales, with both records showing
similar trends through the Holocene. Evidence of higher climate
variability in the Sierra Nevada and the SBB during the warm
mid-Holocene suggests that California climate may becomemore
variable with more intense ENSO events as the northeast Pacific
Ocean continues to warm.
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